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DATA SCIENCE IN THE NEWS

Source: http://f1metrics.wordpress.com/2014/10/03/building-a-race-simulator/
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DATA SCIENCE IN THE NEWS

Source: http://www.pyimagesearch.com/2014/10/13/deep-learning-amazon-ec2-gpu-python-nolearn/

http://www.pyimagesearch.com/2014/10/13/deep-learning-amazon-ec2-gpu-python-nolearn/


RECAP

‣Cleaning data 
‣Dealing with missing data 
‣Setting up github for homework 
!

LAST TIME



QUESTIONS?
INTRO TO DATA SCIENCE



 
I. WHAT IS MACHINE LEARNING? 
II. CLASSIFICATION PROBLEMS 
III. BUILDING EFFECTIVE CLASSIFIERS 
IV. THE KNN CLASSIFICATION MODEL 
 
EXERCISES: 
IV. LAB: KNN CLASSIFICATION IN PYTHON 
V. BONUS LAB: VISUALIZATION WITH MATPLOTLIB (IF TIME ALLOWS)

AGENDA
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from Wikipedia: !
“Machine learning, a branch of artificial intelligence, is about the construction and study of systems 
that can learn from data.” !!!!!!! !! !!
source: http://en.wikipedia.org/wiki/Machine_learning
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from Wikipedia: !
“Machine learning, a branch of artificial intelligence, is about the construction and study of systems 
that can learn from data.” !!!
“The core of machine learning deals with representation and generalization…” !
‣ representation – extracting structure from data !
‣ generalization – making predictions from data !!!
source: http://en.wikipedia.org/wiki/Machine_learning



REMEMBER THIS? 16

source: http://www.dataists.com/2010/09/the-data-science-venn-diagram/
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source: http://www.dataists.com/2010/09/the-data-science-venn-diagram/
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source: http://www.dataists.com/2010/09/the-data-science-venn-diagram/
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source: http://www.dataists.com/2010/09/the-data-science-venn-diagram/

QUESTION!
What does it take to 
make this jump?
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NOTE!
Implementing solutions 
to ML problems is the 
focus of this course!



THE STRUCTURE OF 
MACHINE LEARNING 
PROBLEMS
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Supervised

Unsupervised

Making predictions

Extracting structure



REMEMBER WHAT WE SAID BEFORE? 24

representation

generalization

Supervised

Unsupervised

Making predictions

Extracting structure
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Continuous Categorical

Quantitative Qualitative
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Continuous Categorical

Quantitative Qualitative

NOTE!
The space where data 
live is called the feature 
space.	
!
Each point in this space is 
called a record.
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Supervised

Unsupervised

Continuous Categorical

regression classification
dimension
reduction clustering
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Supervised

Unsupervised

Continuous Categorical

regression classification
dimension
reduction clustering

NOTE
We will implement 
solutions using models 
and algorithms.	
!
Each will fall into one of 
these four buckets.



WHAT IS THE GOAL OF 
MACHINE 
LEARNING?

QUESTION
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Supervised

Unsupervised

Making predictions

Extracting structure
ANSWER!
The goal is determined 
by the type of problem.



HOW DO YOU 
DETERMINE THE RIGHT 
APPROACH?

QUESTION
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Supervised

Unsupervised

Continuous Categorical

regression classification
dimension
reduction clustering

ANSWER!
The right approach is 
determined by the 
desired solution.
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Supervised

Unsupervised

Continuous Categorical

regression classification
dimension
reduction clustering

ANSWER!
The right approach is 
determined by the 
desired solution.

NOTE!
All of this depends on 
your data!



WHAT DO YOU DO WITH YOUR 
RESULTS?

QUESTION
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source: http://benfry.com/phd/dissertation-110323c.pdf

ANSWER!
Interpret them and 
react accordingly.
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source: http://benfry.com/phd/dissertation-110323c.pdf

ANSWER!
Interpret them and 
react accordingly

NOTE!
This also relies on your 
problem solving skills!
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PROBLEMS
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Supervised

Unsupervised

Continuous Categorical

??? ???

??? ???
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Supervised

Unsupervised

Continuous Categorical

regression classification
dimension
reduction clustering
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Here’s (part of) an example dataset:
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Here’s (part of) an example dataset:

{independent	

variables
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Here’s (part of) an example dataset: {
class	

labels	


(qualitative){independent	

variables
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Q: What does “supervised” mean?	
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Q: What does “supervised” mean?	

A: We know the labels.	


class	

labels	


(qualitative)
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Q: How does a classification problem work?



CLASSIFICATION PROBLEMS 49

Q: How does a classification problem work?	

A: Data in, predicted labels out.	


source: http://www-users.cs.umn.edu/~kumar/dmbook/ch4.pdf



Q: What steps does a classification problem 
require?

dataset
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mode
l



Q: What steps does a classification problem 
require?	

 1)  split dataset	

 2)  train model	

 3)  test model

CLASSIFICATION PROBLEMS 53

mode
l

dataset

training set

test set



Q: What steps does a classification problem 
require?	

 1)  split dataset	

 2)  train model	

 3)  test model	

 4)  make predictions

CLASSIFICATION PROBLEMS 54
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require?	
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mode
l

dataset

test set

training set

predictions

new data

NOTE
This new data is called 
out of sample	

data.	
!
We don’t know the 
labels for these OOS 
records!



III. BUILDING EFFECTIVE 
CLASSIFIERS
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mode
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mode
l

dataset

test set

training set

predictions

new data
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 1)  training error	
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      error

BUILDING EFFECTIVE CLASSIFIERS 59

mode
l

dataset

test set

training set

predictions

new data



Q: What types of prediction error will we run into?	

 1)  training error	

 2)  generalization
      error	

 3)  OOS error

BUILDING EFFECTIVE CLASSIFIERS 60

mode
l

dataset

test set

training set

predictions

new data



Q: What types of prediction error will we run into?	

 1)  training error	

 2)  generalization
      error	

 3)  OOS error
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mode
l

dataset

test set

training set

predictions

NOTE!
We want to estimate	

OOS prediction error so 
we know what to 
expect from our model.

new data
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Q: Why should we use training & test sets?
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Suppose instead, we train our model using the entire 
dataset.
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Q: Why should we use training & test sets?	

!
Thought experiment:	

Suppose instead, we train our model using the entire 
dataset.	

Q: How low can we push the training error?	

- We can make the model arbitrarily complex (effectively	


“memorizing” the entire training set).	

A: Down to zero!

NOTE!
This phenomenon	

is called	

overfitting.
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source: Data Analysis with Open Source Tools, by Philipp K. Janert. O’Reilly Media, 2011.!
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source: http://www.dtreg.com
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source: http://www.dtreg.com
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Q: Why should we use training & test sets?	

!
Thought experiment:	

Suppose instead, we train our model using the entire 
dataset.	

Q: How low can we push the training error?	

- We can make the model arbitrarily complex (effectively	


“memorizing” the entire training set).	

A: Down to zero!	

!
A: Training error is not a good estimate of OOS accuracy.

NOTE!
This phenomenon	

is called	

overfitting.
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Suppose we do the train/test split.
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Suppose we do the train/test split.	

!
Q: How well does generalization error predict 
OOS accuracy?	

Thought experiment:	

Suppose we had done a different train/test split.	

Q: Would the generalization error remain the same?	

A: Of course not!	

!
A: On its own, not very well.
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Suppose we do the train/test split.	

!
Q: How well does generalization error predict 
OOS accuracy?	

Thought experiment:	

Suppose we had done a different train/test split.	

Q: Would the generalization error remain the same?	

A: Of course not!	

!
A: On its own, not very well.

NOTE!
The generalization 
error gives a	

high-variance estimate	

of OOS accuracy.
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Something is still missing!	

!
Q: How can we do better?	

Thought experiment:	

Different train/test splits will give us different 
generalization errors.	

Q: What if we did a bunch of these and took the average?	

A: Now you’re talking!	

!
A: Cross-validation.
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Steps for n-fold cross-validation:
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Steps for n-fold cross-validation:	

!
1)  Randomly split the dataset into n equal partitions.	
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partitions as training set.	

3)  Find generalization error.	

4)  Repeat steps 2-3 using a different partition as the 
test set at each iteration.
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Steps for n-fold cross-validation:	

!
1)  Randomly split the dataset into n equal partitions.	

2)  Use partition 1 as test set & union of other 
partitions as training set.	

3)  Find generalization error.	

4)  Repeat steps 2-3 using a different partition as the 
test set at each iteration.	

5)  Take the average generalization error as the 
estimate of OOS accuracy.
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Features of n-fold cross-validation:
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Features of n-fold cross-validation:	

!
1)  More accurate estimate of OOS prediction error.



CROSS-VALIDATION 93

Features of n-fold cross-validation:	

!
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Features of n-fold cross-validation:	

!
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3)  Presents tradeoff between efficiency and computational 
expense.	

        - 10-fold CV is 10x more expensive than a single 
train/test split
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Features of n-fold cross-validation:	

!
1)  More accurate estimate of OOS prediction error.	

2)  More efficient use of data than single train/test split.	

       - Each record in our dataset is used for both training 
and testing.	

3)  Presents tradeoff between efficiency and computational 
expense.	

        - 10-fold CV is 10x more expensive than a single 
train/test split	

4)  Can be used for model selection.



 
IV. KNN CLASSIFICATION

INTRO TO DATA SCIENCE
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Suppose we want to predict the color of the grey 
dot.
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Suppose we want to predict the color of the grey 
dot.	

!
1)  Pick a value for k.	

2)  Find colors of k nearest neighbors.	

3)  Assign the most common color	

       to the grey dot.

OPTIONAL NOTE!
Our definition of 
“nearest” implicitly uses 
the	

Euclidean distance 
function.
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Another example with k = 3
Will our new example be  
blue or orange?
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