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Supervised

Unsupervised

Continuous Categorical

??? ???

??? ???

SO, WHERE ARE WE ON OUR 2X2?
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Supervised

Unsupervised

Continuous Categorical

regression classification
dimension

reduction clustering

CLUSTER ANALYSIS
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Q:  What is logistic regression?

LOGISTIC REGRESSION



11

Q:  What is logistic regression?	


!
A:  A generalization of the linear regression 
model to classification problems.

LOGISTIC REGRESSION
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In linear regression, we used a set of covariates (independent 
variables) to predict the value of a continuous outcome variable.

LOGISTIC REGRESSION
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In linear regression, we used a set of covariates (independent 
variables) to predict the value of a continuous outcome variable.

!
In logistic regression, we use a set of covariates to predict 
probabilities of (binary) class membership.

LOGISTIC REGRESSION
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In linear regression, we used a set of covariates (independent 
variables) to predict the value of a continuous outcome variable.

!
In logistic regression, we use a set of covariates to predict 
probabilities of (binary) class membership.

!
These probabilities are then mapped to class labels, thus solving 
the classification problem (categorical output).

LOGISTIC REGRESSION
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A motivating problem:

The following figure shows 30 day mortality in a sample of septic 
patients as a function of their baseline APACHE II score. Patients 
are coded as 1 or 0 depending on whether they are dead or alive in 
30 days, respectively.

How can we predict death from baseline APACHE II score in these 
patients?

Source: http://www.mc.vanderbilt.edu/gcrc/workshop_files/2004-11-12.pdf

LOGISTIC REGRESSION
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Q: How can we predict death from baseline APACHE II score in these patients?
!
Let p(x) be the probability that a patient with score x will die within 30 days.
!
Well, linear regression would not work well here, because it could produce 
probabilities less than zero or greater than one. Also, one new value could greatly 
change our model…

Source: http://www.mc.vanderbilt.edu/gcrc/workshop_files/2004-11-12.pdf

LOGISTIC REGRESSION
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So, what can we do instead of linear 
regression?

LOGISTIC REGRESSION
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NOTE!
Probability predictions 
look like this.

probability of	


belonging to	



class

value of 
independent 

variable

LOGISTIC REGRESSION
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This function fits our problem much 
better:

!
!
In other words, our classifier will output 
values between 0 and 1. It asymptotically 
approaches 0 and 1.

!
This is called the Sigmoid Function, or the 
Logistic Function (synonymous)

LOGISTIC REGRESSION
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This function fits our problem much 
better:

!
!
In other words, our classifier will output 
values between 0 and 1. It asymptotically 
approaches 0 and 1.

!
This is called the Sigmoid Function, or the 
Logistic Function (synonymous) NOTE!

This function gives 
Logistic Regression its 
name!

LOGISTIC REGRESSION
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The logistic function:

!
!
!
!
Notice that f(t) = 0.5 when t = 0

f(t) >= 0.5 when t > 0

f(t) <= 0.5 when t < 0

Suppose we predict class 1 when f(t) >= 0.5 and class 0 when f(t) < 
0.5


LOGISTIC REGRESSION
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So, if the t in the logistic function is a 
linear function of an explanatory variable 
x, or a linear combination of explanatory 
variables, the logistic function becomes:

LOGISTIC REGRESSION
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Does that exponent 
look familiar…?

LOGISTIC REGRESSION

So, if the t in the logistic function is a 
linear function of an explanatory variable 
x, or a linear combination of explanatory 
variables, the logistic function becomes:
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When B0 + B1x = 0, 
then F(x) = 0.5, 
which is the 
inflection point on 
all these curves.

B0 B1

LOGISTIC REGRESSION
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Going back to our example of patient survival given a sepsis test 
score:

Data that has a sharp cut off point between the two classes (living / 
dying) should have a large value of B1.

LOGISTIC REGRESSION
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Going back to our example of patient survival given a sepsis test 
score:

Data that has a lengthy transition between the two classes (living / 
dying) should have a small value of B1.

LOGISTIC REGRESSION
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NOTE!
Probability predictions 
look like this.

probability of	


belonging to	



class

value of 
independent 

variable

PROBABILITIES
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value of 
independent 

variable

class label NOTE!
Probabilities are 
“snapped” to class 
labels (e.g. by 
thresholding at 50%).

CLASS LABELS
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The logistic regression model is an extension 
of the linear regression model, with a couple 
of important differences.

LOGISTIC REGRESSION
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The logistic regression model is an extension 
of the linear regression model, with a couple 
of important differences.	


!
The first difference is in the outcome 
variable.

LOGISTIC REGRESSION
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The logistic regression model is an extension 
of the linear regression model, with a couple 
of important differences.	


!
The first difference is in the outcome 
variable.	


!
The second difference is in the error term.

LOGISTIC REGRESSION



 
II. OUTCOME VARIABLES
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The key variable in any regression problem 
is the conditional mean of the outcome 
variable y given the value of the covariate x:	


!

OUTCOME VARIABLES
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The key variable in any regression problem 
is the conditional mean of the outcome 
variable y given the value of the covariate x:	


!
!
In linear regression, we assume that this 
conditional mean is a linear function taking 
values in (-∞, +∞):

OUTCOME VARIABLES
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In logistic regression, we’ve seen that the conditional 
mean of the outcome variable takes values only in the 
unit interval [0, 1].

OUTCOME VARIABLES
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In logistic regression, we’ve seen that the conditional 
mean of the outcome variable takes values only in the 
unit interval [0, 1].	


!
The first step in extending the linear regression 
model to logistic regression is to map the outcome 
variable E(y|x) into the unit interval.

OUTCOME VARIABLES
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In logistic regression, we’ve seen that the conditional 
mean of the outcome variable takes values only in the 
unit interval [0, 1].	


!
The first step in extending the linear regression 
model to logistic regression is to map the outcome 
variable E(y|x) into the unit interval.	


!
Q: How do we do this?

OUTCOME VARIABLES
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A: By using a transformation called the logistic 
function:	


!
!

THE LOGISTIC FUNCTION
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A: By using a transformation called the logistic 
function:	


!
!
We’ve already seen what this looks like:	


!

THE LOGISTIC FUNCTION
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A: By using a transformation called the logistic 
function:	


!
!
We’ve already seen what this looks like:	


!

NOTE!
For any value of x, y is 
in the interval [0, 1]	

!
This is a nonlinear 
transformation!

THE LOGISTIC FUNCTION
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The logit function is an important transformation of 
the logistic function. Notice that it returns the linear 
model!

THE LOGISTIC FUNCTION
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The logit function is an important transformation of 
the logistic function. Notice that it returns the linear 
model!	


!
!
!
!
The logit function is also called the log-odds 
function.

THE LOGISTIC FUNCTION
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The logit function is an important transformation of 
the logistic function. Notice that it returns the linear 
model!	


!
!
!
!
The logit function is also called the log-odds 
function.

NOTE!
This name hints at its 
usefulness in 
interpreting our results.	

!
We will see why shortly.

THE LOGISTIC FUNCTION
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The second difference between linear regression and 
the logistic regression model is in the error term.

ERROR TERMS
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The second difference between linear regression and 
the logistic regression model is in the error term.	


!
One of the key assumptions of linear regression is 
that the error terms follow independent Gaussian 
distributions with zero mean and constant variance:

ERROR TERMS
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In logistic regression, the outcome variable can take 
only two values: 0 or 1.

ERROR TERMS
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In logistic regression, the outcome variable can take 
only two values: 0 or 1.	


!
It’s easy to show from this that instead of following a 
Gaussian distribution, the error term in logistic 
regression follows a Bernoulli distribution:	


!
!

ERROR TERMS
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In logistic regression, the outcome variable can take 
only two values: 0 or 1.	


!
It’s easy to show from this that instead of following a 
Gaussian distribution, the error term in logistic 
regression follows a Bernoulli distribution:	


!
! NOTE!

This is the same 
distribution followed by 
a coin toss.	

!
Think about why this 
makes sense!

ERROR TERMS
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These two key differences define the logistic 
regression model, and they also lead us to a kind of 
unification of regression techniques called 
generalized linear models.

AN ASIDE: GLM
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These two key differences define the logistic 
regression model, and they also lead us to a kind of 
unification of regression techniques called 
generalized linear models.	


!
Briefly, GLMs generalize the distribution of the error 
term, and allow the conditional mean of the response 
variable to be related to the linear model by a link 
function.

AN ASIDE: GLM
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In the present case, the error term follows a Bernoulli 
distribution, and the logit is the link function that 
connects us to the linear predictor.

AN ASIDE: GLM
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In the present case, the error term follows a Bernoulli 
distribution, and the logit is the link function that 
connects us to the linear predictor.

AN ASIDE: GLM



 
IV. INTERPRETING RESULTS
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In linear regression, the parameter β represents the 
change in the response variable for a unit change in 
the covariate.

INTERPRETING RESULTS
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In linear regression, the parameter β represents the 
change in the response variable for a unit change in 
the covariate.	


!
In logistic regression, β represents the change in the 
logit function for a unit change in the covariate.

INTERPRETING RESULTS
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In linear regression, the parameter β represents the 
change in the response variable for a unit change in 
the covariate.	


!
In logistic regression, β represents the change in the 
logit function for a unit change in the covariate.	


!
Interpreting this change in the logit function requires 
another definition first.

INTERPRETING RESULTS
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The odds of an event are given by the ratio of the 
probability of the event by its complement:

INTERPRETING RESULTS
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The odds of an event are given by the ratio of the 
probability of the event by its complement:	


!
!
!
The odds ratio of a binary event is given by the odds 
of the event divided by the odds of its complement:

INTERPRETING RESULTS
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Substituting the definition of π(x) into this equation 
yields (after some algebra),	



INTERPRETING RESULTS
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Substituting the definition of π(x) into this equation 
yields (after some algebra),	


!
!
This simple relationship between the odds ratio and 
the parameter β is what makes logistic regression 
such a powerful tool.

INTERPRETING RESULTS
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!
Q: So how do we interpret this?

INTERPRETING RESULTS
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!
Q: So how do we interpret this?	


!
A: The odds ratio of a binary event gives the 
increase in likelihood of an outcome if the 
event occurs.

INTERPRETING RESULTS
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!
Suppose we are interested in mobile 
purchase behavior. Let y be a class label 
denoting purchase/no purchase, and let x 
denote a mobile OS (for example, iOS).

INTERPRETING RESULTS – AN EXAMPLE
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!
Suppose we are interested in mobile 
purchase behavior. Let y be a class label 
denoting purchase/no purchase, and let x 
denote a mobile OS (for example, iOS).	


!
In this case, an odds ratio of 2 (eg, β = 
log(2)) indicates that a purchase is twice as 
likely for an iOS user as for a non-iOS user.	



INTERPRETING RESULTS – AN EXAMPLE



LAB: LOGISTIC REGRESSION

INTRO TO DATA SCIENCE


